Close help

How to use this Learning Station

On this Learning Station, you can read and test your knowledge. Tap on a book to open its chapter list. In each chapter, you can take a quiz to test your knowledge.

To take tests, you must register with your email address or cell number. It is free to register and to take tests.

For help email info@bettercare.co.za or call +27 76 657 0353.

Printed books and CPD points

Learning is easiest with printed books. To order printed books, email info@bettercare.co.za or call +27 76 657 0353.

Visit bettercare.co.za for information.

5

Management of important problems

Take the chapter test before and after you read this chapter.

Open chapter test

Close test

First time? Register for free. Just enter your email or cell number and create a password.

Close test

Contents

Objectives

When you have completed this unit you should be able to:

Introduction

5-1 What are the important complications of infants born in a level 1 clinic or hospital?

  1. Poor breathing at birth
  2. Hypothermia
  3. Hypoglycaemia
  4. Respiratory distress
  5. Jaundice
  6. Infection
  7. Trauma
  8. Bleeding
  9. Convulsion
  10. Congenital abnormalities
  11. HIV exposed infant

It is important that the nursing and medical staff at these clinics and hospitals are able to prevent, diagnose and manage these conditions.

5-2 Can these complications be prevented?

Many of these complications can be prevented with good antenatal and labour care, together with good care of the infant after delivery. Whenever possible, women who are at risk of delivering an infant with complications should be identified before delivery. These women can then be referred for delivery at a level 2 or 3 hospital where special care for the infant is available.

5-3 What is the management of these complications if the infant is born in a level 1 clinic or hospital?

  1. They should be prevented antenatally if possible.
  2. The mother should be transferred to a level 2 or 3 hospital before delivery if possible.
  3. The condition should be prevented after birth if possible.
  4. The condition should be diagnosed as soon as possible after delivery.
  5. Emergency management must be given.
  6. The infant should be discussed with the staff of the referral hospital.
  7. A decision must be made as to whether the infant should be transferred or continue to be managed at the level 1 clinic or hospital.
  8. Infants kept at the level 1 clinic or hospital must be correctly managed.

Management of an infant with jaundice

5-4 What is jaundice?

Jaundice is a yellow discolouration of the skin caused by deposits of bilirubin. Jaundice is a clinical sign and not a laboratory measurement.

5-5 What is bilirubin?

Red cells in the blood contain a red pigment called haemoglobin, which carries oxygen. Red cells live for a few months only. Therefore, the body is continually forming new red cells in the bone marrow and destroying old red cells in the liver and spleen. The haemoglobin in old red cells is broken down into a yellow pigment called bilirubin. As newborn infants normally have a high haemoglobin concentration, they produce a lot of bilirubin.

5-6 What is hyperbilirubinaemia?

Hyperbilirubinaemia is defined as a concentration of total serum bilirubin that is higher than the normal range. Normally the bilirubin concentration in the serum is low at birth, as it has been rapidly removed by the placenta during pregnancy. The bilirubin concentration climbs steadily for the first few days after delivery, before returning to an adult level by 2 weeks.

5-7 How is bilirubin excreted?

After birth, bilirubin is carried by the bloodstream to the liver where a special enzyme changes the bilirubin into a water-soluble form. This chemical process is called conjugation. Only when the bilirubin is water soluble (i.e. conjugated) can the liver cells excrete it into the small bile ducts. From here the conjugated bilirubin is carried in the bile to the small intestine, where it is broken down further by bacteria and is excreted in the stool.

During the first weeks of life the enzyme system that conjugates bilirubin in the liver functions slowly. Therefore, the amount of bilirubin increases in the serum and the newborn infant may become jaundiced as the excess bilirubin is deposited in the skin. After a few days the rate of conjugation in the liver increases and much more bilirubin is excreted. As a result, the amount of bilirubin in the serum slowly returns to the normal adult range and any jaundice disappears.

Some of the bilirubin that is conjugated and excreted by the liver in the first weeks of life is often broken down (unconjugated) by another enzyme in the intestine. This bilirubin is then reabsorbed into the bloodstream, adding to the hyperbilirubinaemia. The reabsorption of bilirubin from the intestine is greater in starved and breastfed infants.

5-8 How is bilirubin measured?

It is both difficult and inaccurate to assess the concentration of bilirubin in the serum by clinical examination of the degree of jaundice, especially in an infant with dark skin. It is important to measure the bilirubin concentration of the serum if an infant is very jaundiced. Usually a sample of blood is collected into a capillary tube and spun down to separate the serum from the red cells. The total serum bilirubin (TSB) is then measured with a bilirubinometer and expressed in µmol/l.

The total serum bilirubin (TSB) cannot be estimated accurately by assessing the degree of jaundice in the skin.

5-9 What is physiological jaundice?

This is the mild jaundice that is seen in up to 50% of all healthy term infants during the first 2 weeks of life. Many of these infants are breastfed. These infants are well and do not need any treatment. Physiological jaundice in newborn infants is the result of:

  1. The normally high haemoglobin concentration which results in a lot of bilirubin being produced.
  2. The slow rate of conjugation of bilirubin by the liver, which results in only small amounts being excreted.
  3. The reabsorption of bilirubin from the intestines during the first few weeks after birth.

All these factors usually disappear by 2 weeks and the jaundice disappears.

Many healthy infants have mild jaundice.

5-10 When is jaundice abnormal?

  1. If the TSB increases above the upper limit of the normal range or the infant looks severely jaundiced. The phototherapy line shown in Figure 1 is the upper limit of normal for TSB. Jaundice of the palms and soles suggests severe jaundice.
  2. If the infant appears jaundiced in the first 24 hours.
  3. If the infant is still jaundiced after 1 month.
  4. If the infant is clinically sick or anaemic.

It is very important to decide whether the jaundice is physiological or abnormal.

5-11 What causes jaundice which is abnormal and not physiological?

  1. When too much bilirubin is produced from haemoglobin because:
    • The concentration of haemoglobin is very high (i.e. polycythaemia)
    • Bilirubin is absorbed from a cephalhaematoma or area of bruising
    • There is a very rapid breakdown of red blood cells (i.e. haemolysis)
  2. When the excretion of bilirubin is too slow:
    • Preterm infants who have an immature liver
    • About 10% of clinically healthy term infants have slower conjugation than normal.
    • Congenital hypothyroidism. Due to the absence of a thyroid gland and low concentrations of thyroid hormone, the enzymes in the liver function very slowly.
  3. When the infant has hepatitis due to:
    • Congenital syphilis
    • Septicaemia
  4. When too much bilirubin is reabsorbed from the intestines:
    • Starved infants
    • Some breastfed infants

It is not uncommon for otherwise healthy breastfed infants to remain jaundiced for more than 2 weeks.

All these conditions may cause an abnormally high TSB and a very jaundiced infant.

5-12 What is haemolytic disease of the newborn?

Haemolytic disease of the newborn is a condition where antibodies from the mother cross the placenta into the fetal bloodstream. Here these antibodies destroy the fetal red cells (i.e. haemolysis), causing anaemia and an increased production of bilirubin in the fetus and newborn infant. The 2 most important causes of haemolytic disease of the newborn are:

  1. ABO haemolytic disease
  2. Rhesus haemolytic disease

In haemolytic disease of the newborn the blood group of the infant is different to that of the mother as it is inherited from the father.

5-13 What is ABO haemolytic disease?

Red cells have blood group proteins on their surface. A, B, O and D (Rhesus) are the most important blood group proteins. ABO haemolytic disease occurs when the mother is blood group O and her fetus is blood group A or B. For reasons unknown, some group O mothers start producing antibodies to the A or B proteins. These antibodies cross the placenta and cause haemolysis in the fetus by damaging the fetal red cells. With ABO haemolytic disease, the haemolysis is not severe enough to cause anaemia in the fetus but may cause severe jaundice and anaemia in the newborn infant.

The haemolysis results in anaemia (low haemoglobin concentration and low packed cell volume) and jaundice in the newborn infant. An infant with ABO haemolytic disease usually appears normal at delivery but becomes jaundiced within the first 24 hours. The TSB may increase rapidly and reach dangerous levels. Due to the haemolysis, the infant may also become anaemic. ABO haemolytic disease cannot be prevented.

Jaundice on day 1 suggests haemolytic disease.

5-14 What is Rhesus haemolytic disease?

Rhesus haemolytic disease is a form of haemolytic disease of the newborn, which may occur when the mother is Rhesus negative (she has no D protein on her red cells) and her fetus is Rhesus positive (it has D protein on its red cells). Rhesus haemolytic disease is caused by maternal antibodies to the D (i.e. Rhesus or Rh) protein on the red cells of the fetus. Only if fetal red cells accidentally cross the placenta, and enter the mother’ s bloodstream, will she produce antibodies to the D protein of her fetus. This process is known as sensitisation and may occur in a Rhesus-negative woman during a delivery, miscarriage or placental abruption. Rhesus haemolytic disease is more severe than ABO haemolytic disease. Therefore, the fetus may develop severe anaemia and die before birth. If born alive, the newborn infant rapidly becomes jaundiced and anaemic.

5-15 How can you prevent Rhesus haemolytic disease?

All pregnant women must have their blood group tested at the start of antenatal care. All Rhesus-negative women must be given 100 µg (4 ml) of anti-D immunoglobulin by intramuscular injection within 72 hours of delivery, miscarriage or placental abruption. This prevents sensitisation.

All women must have their blood group identified during pregnancy and all Rhesus-negative mothers must receive anti-D immunoglobulin after delivery.

5-16 When is jaundice dangerous?

Jaundice can become dangerous when the concentration of bilirubin in the blood becomes very high. Bilirubin could then enter the brain of the newborn infant and cause bilirubin encephalopathy (also called kernicterus). The risk of bilirubin encephalopathy depends on the severity of the hyperbilirubinaemia. In well, term infants the TSB becomes dangerous and may cause bilirubin encephalopathy above 350 µmol/l while in preterm infants the TSB becomes dangerous above 250 µmol/l.

A high serum concentration of bilirubin can damage the brain.

Bilirubin encephalopathy presents with lethargy, a high-pitched cry and convulsions.

5-17 How can bilirubin encephalopathy be prevented?

By not allowing the TSB to reach dangerous levels. A number of methods can be used to reduce the TSB:

  1. Give early milk feeds (to reduce bilirubin reabsorption from the intestine).
  2. Prevent preterm delivery.
  3. Give anti-D immunoglobulin to all Rhesus-negative mothers after delivery, a miscarriage or abruptio placentae.
  4. Give phototherapy when the TSB approaches dangerous levels.
  5. Do an exchange transfusion when phototherapy cannot keep the TSB below dangerous levels.

Early milk feeds help lower the total serum bilirubin.

5-18 What is phototherapy?

Phototherapy uses white or blue light to change bilirubin in the skin into a water-soluble form of bilirubin. This water-soluble bilirubin is then carried in the blood to the liver, from where it can be excreted without having to be conjugated. Phototherapy is, therefore, able to lower the TSB.

5-19 What equipment is used to give phototherapy?

Phototherapy is usually given with a phototherapy unit, which consists of a row of fluorescent tubes. Daylight tubes, white tubes or blue tubes are used. They should be changed after being used for 1000 hours because their effectiveness decreases with time, even if they still appear bright. A perspex (clear plastic) sheet must be placed below the tubes to reduce heat and filter out any ultraviolet light. A perspex sheet also protects the infant if a fluorescent tube breaks or comes loose.

Although exposure to sunlight also lowers the TSB, an infant placed in the sun may rapidly become too hot. Therefore, this form of phototherapy must be used with great caution.

5-20 When should you give phototherapy?

Whenever the TSB is above the normal range and approaches dangerous levels, or if the infant appears very jaundiced. In practice, a simple chart is used to decide when to give phototherapy. If the TSB concentration reaches the phototherapy line, treatment should be started. The phototherapy line is the same as the upper limit of normal for the TSB and increases from birth to day 4 then levels off. Phototherapy is usually started earlier in preterm or sick infants. It is not necessary to give phototherapy to healthy term infants who are jaundiced with a TSB below the phototherapy line. In other words, phototherapy should not be given to well infants with physiological jaundice. It is very difficult to use phototherapy safely if the TSB cannot be measured.

See Figure 5-1 for a phototherapy chart showing the phototherapy line for term infants.

Figure 5-1: Phototherapy chart showing the phototherapy line for term infants.

Figure 5-1: Phototherapy chart showing the phototherapy line for term infants.

Prophylactic phototherapy is given when the TSB is still below the phototherapy line, but either the TSB is expected to increase rapidly or the infant is at an increased risk of bilirubin encephalopathy. Therefore, prophylactic phototherapy is started immediately after birth if haemolytic disease of the newborn is suspected or diagnosed. Prophylactic phototherapy is often given to preterm infants when their TSB gets near the phototherapy line.

5-21 How do you give phototherapy?

  1. Switch on the phototherapy unit and make sure the tubes are all working. Check the age of the tubes and ensure that the perspex sheet is in position.
  2. Place the infant naked in an incubator or bassinet so that the infant is about 40 cm from the phototherapy tubes. The infant must not wear a cap or nappy. Instead, a nappy can be placed under the infant.
  3. Cover the infant’s eyes with pads as the bright light often worries the infant. Remove the eye pads during feeding so that the eyes can be checked for infection and to allow the infant and mother to see each other.
  4. Turn the infant over every hour. Frequent turning will make the phototherapy more effective as more skin is exposed to the light.
  5. Feed the infant milk, at least every 3 to 4 hours. Breastfeed if possible.
  6. Monitor the infant’s skin temperature hourly, weigh daily and measure TSB daily or more frequently if it approaches dangerous levels.
  7. Allow the mother unrestricted visiting. If possible, the infant should be given phototherapy next to the mother in the postnatal ward.

It is difficult to give phototherapy safely if the TSB cannot be measured.

5-22 For how long should you give phototherapy?

Continue phototherapy until the TSB has been under the phototherapy line for 24 hours. Sometimes the TSB rises above the line again after the phototherapy has been stopped. If so, the phototherapy should be restarted.

5-23 What are the problems with phototherapy?

  1. The infant may become too hot or too cold.
  2. The infant may pass large, loose, green stools.
  3. The infant’s eye pads may cover its nose or prevent conjunctivitis being noticed.
  4. Phototherapy may interfere with maternal bonding if the infant is separated from the mother.
  5. The clinical jaundice may disappear even though the TSB remains high.
  6. Skin rashes are common.

The total serum bilirubin should be measured in all infants receiving phototherapy.

If the TSB cannot be measured at the level 1 clinic or hospital, a heparinized capillary tube of blood should be sealed at both ends with plasticine and placed in a box to keep light away. It must be sent to the nearest laboratory, which should phone the result to the clinic or hospital as soon as it is available. While waiting for the result, phototherapy should be started.

5-24 When should an infant with jaundice be transferred?

  1. Whenever there are any signs of abnormal jaundice, such as jaundice in the first 24 hours, severe jaundice or jaundice in an ill infant, ie. when the jaundice is not physiological.
  2. If the TSB is more than 100 µmol/l above the phototherapy line.
  3. If the TSB is above 350 µmol/l.

These infants should be discussed with the staff of the referral hospital before transfer.

Infection in the newborn infant

5-25 What infections are important in newborn infants?

  1. Conjunctivitis
  2. Umbilical cord infection
  3. Skin infection
  4. Oral thrush
  5. Septicaemia
  6. Congenital syphilis
  7. HIV infection

5-26 Why is infection common in newborn infants?

Because they have an immature immune system and are exposed to infectious organisms during pregnancy, delivery and in the nursery. The risk of infection in the newborn infant is much higher than in older children or adults. Infection is important as it is one of the commonest causes of death in infants during the first few months of life.

Infection is a common cause of death in young infants.

5-27 How can you prevent infection in newborn infants?

There are many simple ways in which infections can be prevented in the newborn infant:

  1. Do not separate mothers and their infants unless absolutely necessary. Use skin-to-skin care.
  2. Breastfeeding. Breast milk contains cells and antibodies, which help to protect the infant from infections.
  3. Vernix has antibacterial properties and, therefore, should not be washed off routinely after delivery. It is rapidly absorbed by the skin.
  4. Hand spraying or hand washing before touching an infant is the most important method of preventing the spread of infection in the nursery. Before handling an infant spray your hands with an antiseptic spray (e.g. D-germ). There is no evidence that gowns or masks reduce cross-infection. In the home, the family must wash their hands well after using the toilet.
  5. Routine care of the umbilical stump with alcohol (surgical spirits) helps prevent infection.
  6. Routine prophylactic eye care after delivery with chloromycetin ointment prevents conjunctivitis resulting from infection with Gonococcus during delivery.
  7. If formula feeds are being used, the aseptic preparation of formula feeds, and the boiling of cups, bottles and teats is essential to prevent contaminated feeds. Use a cup rather than a bottle to give formula feeds.
  8. Stethoscopes and other instruments should be sprayed with an antiseptic spray before an infant is examined.
  9. Immunisation of all pregnant women with tetanus toxoid prevents neonatal tetanus complicating cord infection.
  10. Avoid overcrowding in nurseries by keeping normal infants with their mothers whenever possible.

Breast milk protects against infections.

It is not necessary to restrict visits of parents and family in the nursery provided that strict hand washing and hand spraying is enforced. There is no need for visitors to wear masks or gowns. If possible, family and staff with coughs, colds and ’flu should not handle infants. Herpes infection (fever blisters) can cause a very serious infection. Infants should not be kissed.

5-28 What are the signs of conjunctivitis?

Conjunctivitis presents with:

  1. A discharge from the eyes (mucus or pus)
  2. Redness of the conjunctivae
  3. Oedema of the eyelids

The degree of conjunctivitis can be divided clinically into mild, moderate and severe:

  1. Mild conjunctivitis consists of a slight discharge. The eyelashes tend to stick together.
  2. Moderate conjunctivitis presents with redness of the conjunctivae with an obvious discharge. Pus is present in the eye when the lids are separated.
  3. Severe conjunctivitis has a marked discharge with oedema of the eyelids. Pus spurts from the eye and runs down the cheeks when the eyelids are opened. In the most severe cases, it is not possible to separate the eyelids due to the swelling. The pus may soften the cornea and cause it to perforate (burst), severely damaging the eye.

Conjunctivitis is usually mild. It is difficult to clinically identify the organism causing conjunctivitis, although severe conjunctivitis is usually caused by Gonococcus from the mother’s cervix and vagina. Therefore, the management depends on the severity rather than the cause.

5-29 What is the management of conjunctivitis?

  1. Mild conjunctivitis can usually be treated by cleaning the eye with saline or warm water at feeding times or when the lashes become sticky. A local antibiotic is usually not needed.
  2. Moderate conjunctivitis should be treated by cleaning the eye and then putting in chloromycetin ointment 3-hourly or more frequently if needed.
  3. Severe conjunctivitis is a medical emergency as it can lead to blindness if not promptly and efficiently treated. The infection is usually due to Gonococcus and treatment consists of irrigating the eye and giving parenteral penicillin:
    • The pus must be washed out of the eye with saline, warm water or penicillin drops. This must be started immediately and repeated frequently enough to keep the eye clear of pus. The simplest way of irrigating the eye is to use a vacolitre of normal saline and an administration set. Penicillin drops can also be used. They can be made up in the nursery by adding 1 ml of benzyl penicillin to 50 ml sterile water or normal saline. The mixture must not be kept for more than 24 hours.
    • Benzyl penicillin intravenously 6-hourly or procaine penicillin intramuscularly 12-hourly must be given for 3 days. The dose of both benzyl and procaine penicillin is 50 000 units/kg/day. Penicillin eye drops alone are inadequate for treating severe conjunctivitis as the infection may have already spread to involve the whole eye. Start this treatment before referring the infant urgently to a level 2 or 3 hospital for further management.

Gonococcus causes severe conjunctivitis which may result in blindness.

5-30 What are the signs of an infected umbilical cord?

A healthy umbilical cord stump is white and soft at delivery. With good cord care it becomes dark brown and dehydrated within a few days, and at no stage does it smell offensive or produce pus. The aim of good cord care is to dry the cord and keep it clean.

Infection of the umbilical cord (omphalitis) presents with:

  1. An offensive (smelly) cord with a discharge of pus
  2. Failure of the cord to become dehydrated (i.e. the cord remains wet and soft)
  3. Redness of the skin around the base of the cord (a flare)

The commonest site of infection is at the base where the cord meets the skin. When the infection is localised to the cord only, there is no oedema of the skin around the base of the cord and the infant is generally well. Umbilical cord infection may spread to the anterior abdominal wall from where it may cause a peritonitis or septicaemia. Signs that the infection of the umbilical cord has extended to the abdominal wall are:

  1. Redness and oedema of the skin around the base of the cord and spreading onto the abdomen (cellulitis)
  2. Abdominal distension, often with decreased bowel sounds and vomiting (peritonitis)
  3. The infant is generally unwell with the features of septicaemia

Cellulitis, peritonitis and septicaemia are serious infections and the infant may die if not treated immediately with intramuscular or intravenous antibiotics. Infection of the umbilical cord may also cause tetanus in the newborn infant.

5-31 How do you treat umbilical cord infection?

With good preventative cord care, infection of the umbilical cord should not occur. Prevention consists of routine applications of alcohol (surgical spirits) to the cord every 6 hours until it is dehydrated. Antibiotic powder is not used. Do not put aspirin or other home remedies on the cord. Never cover the cord with the nappy or a bandage as this keeps it moist.

If the infection is localised to the umbilical cord, and there are no signs of cellulitis, peritonitis, septicaemia or tetanus, then treatment consists simply of cleaning the cord with surgical spirits every 3 hours to clear the infection and hasten dehydration. Neither local nor systemic antibiotics are needed. Special attention must be paid to the folds around the base of the cord, which often remain moist. Within 24 hours the infection should have cleared. Keep a careful watch for signs that the infection may have spread beyond the umbilicus.

5-32 What is tetanus?

Tetanus in the newborn infant (tetanus neonatorum) is caused by bacteria, which infect dead tissues such as the umbilical cord. Tetanus bacteria usually occurs in soil and faeces, which may be placed on the cord or other wounds as a traditional practice. They produce a powerful toxin that affects the nervous system.

Tetanus presents with:

  1. Increased muscle tone (spasm), especially of the jaw muscles and abdomen
  2. Generalised muscle spasms and convulsions, often precipitated by stimulation such as handling or loud noises
  3. Respiratory failure and death in untreated infants, due to spasm of the respiratory muscles

5-33 How do you manage tetanus?

Tetanus can be prevented by:

  1. Good cord care
  2. Immunising all pregnant women with tetanus toxoid if tetanus is common in the region. All children should be fully immunised.

The emergency treatment of tetanus consists of:

  1. Keeping the airway clear and giving oxygen
  2. Not stimulating the infant
  3. Stopping spasms with 1 mg diazepam (Valium) rectally. This may have to be repeated until the spasms stop. You may have to mask and bag ventilate the infant.
  4. Transferring the infant urgently to the nearest level 2 and 3 hospital

5-34 What are the signs and causes of skin infection?

The 2 commonest forms of skin infection in the newborn infant are:

  1. Impetigo caused by Staphylococcus, which presents as pus-filled blisters usually seen around the umbilicus or in the nappy area.
  2. A monilial rash caused by a fungus (Candida or Monilia). This almost always occurs in the nappy area and presents as a red, slightly raised ‘velvety’ rash which is most marked in the skin creases. In contrast, a nappy rash due to irritation of the skin by stool and urine usually affects the exposed areas of the skin and not the creases.

A sweat rash, due to excessive sweating, may look like an infection. It presents as small clear blisters on the forehead or a fine red rash on the neck and trunk. Treat by washing the infant to remove the sweat and prevent overheating.

5-35 How do you treat skin infections?

If you pay strict attention to hand washing and spraying, and do not routinely wash off vernix, then skin infection should not be a problem in the nursery.

  1. Impetigo is treated by washing the infant in chlorhexidine (e.g. Bioscrub) or a red soap (e.g. Lifebuoy) twice a day for 5 days. If the infant should become unwell and show any signs of septicaemia, then urgent treatment with parenteral antibiotics is indicated.
  2. A monilial rash should be treated with topical mycostatin (Nystatin) cream and the area should not be covered. Allow the infant to sleep on a nappy and keep the infected area of skin exposed to the air. A little sunshine will also help, but do not let the infant get too hot or sunburned.

5-36 What are the clinical signs and management of oral thrush?

Oral thrush is caused by a fungus (Candida or Monilia). It presents as a patchy white coating on the tongue and mucus membrane of the mouth. Unlike a deposit of milk curds sometimes seen after a feed, thrush cannot easily be wiped away. Mild thrush is very common, especially in breastfed infants and usually requires no treatment. In contrast, with severe thrush the tongue and mucous membrane are red and covered with a thick white layer of fungus. The infant feeds poorly due to a painful mouth. The infant appears miserable and may lose weight or even become dehydrated.

Severe thrush should be treated with 1 ml mycostatin drops (Nystatin) into the mouth after each feed. Mycostatin ointment can also be used and should be wiped onto the oral mucus membrane with a swab or clean finger. Treatment should be continued for a week. Gentian violet can be used on the thrush if mycostatin is not available. In a breastfed infant the source is usually monilial infection of the mother’s nipples. Mycostatin ointment should be smeared on the nipple and areolae after each feed. If the mother has a monilial vaginal discharge, this should be treated with mycostatin vaginal cream to reduce the amount of Candida on the mother’s skin. In bottle-fed infants, the bottles and teats must be boiled after the feed. Disinfectant solutions such as Milton and Jik are very useful to prevent bacterial contamination of bottles, but may not kill Candida. Dummies should be boiled or thrown away.

5-37 What are the signs of septicaemia?

The clinical signs of septicaemia are often non-specific, making the early diagnosis of septicaemia difficult. The common clinical signs are:

  1. Lethargy and appearing generally unwell
  2. Poor feeding. The infant may also fail to gain or even lose weight.
  3. Abdominal distension and vomiting
  4. Pallor (appear pale), jaundice and purpura (small red or blue spots due to bleeding into the skin)
  5. Recurrent apnoea
  6. Hypothermia
  7. Oedema or sclerema (a woody feel to the skin)

The infant may also have signs of pneumonia, meningitis or necrotising enterocolitis.

5-38 How should you treat septicaemia?

Management of septicaemia consists of:

  1. General supportive care of a sick infant (i.e. keep the infant warm, monitor the vital signs, give oxygen and intravenous fluids if necessary).
  2. Antibiotics. Usually ceftriaxone or cefotaxime 100 mg/kg/day IM alone, or benzyl penicillin 50 000 units/kg/day IM or IV plus gentamicin 7.5 mg/kg/day IM or IV. Intramuscular ceftriaxone, gentamicin and benzathine penicillin are given daily, while intravenous benzyl penicillin and cefotaxime are given 8-hourly.
  3. Discuss the infant urgently with the referral hospital and arrange transfer.

5-39 What are the signs of congenital syphilis?

An infant born with congenital syphilis may have one or more of the following signs:

  1. Low birth weight
  2. Blisters and peeling of the hands and feet
  3. A distended abdomen due to an enlarged liver and spleen
  4. Pallor due to anaemia
  5. Purpura (petechiae) due to too few platelets
  6. Jaundice due to hepatitis
  7. Respiratory distress due to pneumonia
  8. A heavy, pale placenta weighing more than a fifth of the weight of the infant

Some infants that have recently acquired congenital syphilis may have no clinical signs yet. If untreated, most of these asymptomatic infants will develop clinical signs of syphilis within a few months. Infants with congenital syphilis will have a positive VDRL or RPR test.

5-40 How do you treat congenital syphilis?

The method of treatment depends on whether the infant has clinical signs of congenital syphilis or not:

  1. If the infant has clinical signs of syphilis give 50 000 units/kg of procaine penicillin daily by intramuscular injection for 10 days. These infants are often very sick and need good general supportive care in a level 2 hospital.
  2. If the mother has untreated syphilis or has not received a full course of treatment (3 weekly doses of benzathine penicillin), and the infant has no clinical signs of syphilis, then the infant can be treated with a single intramuscular dose of 50 000 units/kg of benzathine penicillin.
  3. If the mother has received a full course of penicillin and the infant has no signs of syphilis, then the infant requires no treatment.

5-41 What is the risk of mother to child transmission of HIV?

If an HIV positive women does not use antiretroviral (ARV) prophylaxis or treatment during pregnancy and labour and during breast feeding the risk of HIV infecting her infant is approximately 25%. However if ARVs are used correctly this risk is reduced to less than 2%. The current ARV regimen for women in South Africa is daily fixed dose combination (FDC) pill of TDF (tenofovir), FTC (emtricitabine ) and efavirenz (EFV) during pregnancy and labour and until the end of breast feeding.

5-42 How should an HIV exposed infant be managed after delivery?

All HIV exposed infants should be given an oral dose of nevirapine (NVP) as soon as possible after delivery and then a daily dose until the age of 6 weeks (post exposure prophylaxis). Daily NVP can be stopped at 6 weeks even if the mother is still breast feeding provided that she continues to take daily FDC until her last breast feed. Daily NVP until a week after the last breast feed will reduce the risk of HIV transmission if the mother has not received ARVs. Most HIV infected infants appear clinically normal at birth.

All HIV exposed infants should be given a daily dose of nevirapine for six weeks after delivery

5-43 What is the daily dose of nevirapine for infants?

Most term infants will need 1.5 ml NVP from birth to six weeks.

Table 5-1: Daily dosing of nevirapine for infants

  Birth weight Daily dosage Quantity
NVP syrup 10mg/ml Less than 2.0 kg First 2 weeks: 2mg/kg 0.2ml/kg
    Next 4 weeks: 4mg/kg 0.4ml/kg
  2.0 – 2.5 kg Birth to 6 weeks: 10mg 1.0ml
  More than 2.5 kg Birth to 6 weeks: 15mg 1.5 ml

5-44 What is the management of HIV exposed infants after the age of six weeks?

At 6 weeks of age a PCR test should be done on all HIV exposed infants to determine whether the infant has been infected with HIV or not. If the test is negative the infant has not been infected and should received routine primary care. If the test is positive the infant has been infected and must be referred to an HIV clinic for further management which will include lifelong ARV treatment.

Trauma in the newborn infant

5-45 What are the important types of trauma in the newborn infant?

  1. Cephalhaematoma
  2. Brachial plexus injury (Erb’s palsy)
  3. Bruising

5-46 What is a cephalhaematoma?

A cephalhaematoma is a collection of blood under the periosteum of the parietal bone of the skull. It is common, appears within hours of delivery as a soft swelling on the side of the head, and may be on one or both sides. A cephalhaematoma is caused by damage to capillaries under the periosteum and, therefore, never extends beyond the edges of the bone. Cephalhaematomas are usually small and need no treatment. The absorption of blood may cause jaundice, however, which may require treatment by phototherapy. It can take up to 3 months before the cephalhaematoma disappears. Never aspirate a cephalhaematoma as it may result in further bleeding or infection.

Never aspirate or drain a cephalhaematoma.

In contrast, a subaponeurotic haemorrhage is a collection of blood under the scalp. Fortunately a subaponeurotic haemorrhage is not common as it rapidly results in shock due to blood loss.

5-47 What is a brachial plexus injury?

A brachial plexus injury (or Erb’s palsy) is caused by excessive pulling on the head and neck during delivery. The infant is usually large and born at term with difficulty delivering the shoulders. Brachial palsy may also complicate a poorly managed breech delivery. By over-stretching the neck, the brachial plexus of nerves in the infant’s neck is damaged.

Immediately after birth it is noticed that the infant does not move one arm due to weakness at the shoulder and elbow. The arm remains fully extended and held beside the body. The infant is unable to flex that arm at the elbow or lift the arm off the bed. Movement of the hand and fingers is normal, however. The infant also has a markedly asymmetrical Moro reflex. Unless there is an associated fracture, there is no tenderness, pain or swelling of the arm.

Usually the weakness is much better by a week and full movement and power returns within a month. If the weakness is not much improved by a week, refer the infant to a level 2 or 3 hospital for assessment. Keeping the arm above the head will not help recovery.

A facial palsy presenting with weakness of one side of the face after delivery is not common and usually recovers within a few days.

5-48 What causes bruising?

Bruising is common after difficult deliveries, especially breech delivery in a preterm infant. The bruise is due to bleeding into the skin. A tight umbilical cord around the neck commonly causes severe congestion and bruising of the face. The bruise fades after a week or two and needs no treatment. The absorbed blood may cause jaundice, requiring phototherapy.

Rarely, fractures of the clavicle (collar bone), humerus or even femur occur after a very difficult delivery. These fractures usually heal well without splinting. Paracetamol (Panado syrup 2.5 ml) should be given for pain relief in all fractures.

The management of bleeding in the newborn infant

5-49 What is the commonest cause of bleeding?

Bleeding from the cut umbilical cord due to a slipped cord clamp or cord tie. Therefore, it is very important to make sure that the cord is clamped or tied correctly, or the infant may bleed severely.

5-50 What is haemorrhagic disease of the newborn?

Haemorrhagic disease of the newborn is bleeding due to a lack of vitamin K, which is needed by the infant to produce clotting factors in the liver. During pregnancy the fetus does not get much vitamin K from the mother and there is not much vitamin K in breast milk.

Infants with haemorrhagic disease of the newborn usually bleed from their umbilical cord, vomit blood or have blood in their stools during the first week of life. If severe, the infant can bleed to death. Any infant presenting with bleeding must be given 1 mg of Konakion (vitamin K) and urgently referred to a level 2 or 3 unit. If very pale and shocked, the infant must first be resuscitated and given intravenous fluid.

5-51 How do you prevent haemorrhagic disease of the newborn?

By giving all infants 1 mg (0.1 ml) of Konakion by intramuscular injection after delivery. This is best given into the lateral thigh (NOT into the buttock).

All babies must be given intramuscular Konakion after delivery.

Oral Konakion should not be used, as it cannot be relied on to prevent haemorrhagic disease unless it is given repeatedly.

5-52 What is purpura?

Purpura (or petechiae) are small bleeds under the skin presenting as pink or blue spots. Purpura usually only occurs over part of the body and is caused by pulling and squeezing of the arms or legs during a difficult delivery. It disappears after a few days. If purpura occurs over the whole body there is probably some abnormality with the infant’s platelets. These infants must be urgently referred to a level 2 or 3 hospital for investigation and treatment. Do not confuse purpura with the blue patches (Mongolian spots) commonly seen over the back.

Management of convulsions (fits)

5-53 How can you recognise a convulsion in a newborn infant?

A convulsion (fit) may present as:

  1. Twitching of part of the body (e.g. a hand), one side of the body, or the whole body (a generalised fit)
  2. Extension (spasm) of part of the body (e.g. an arm) or the whole body
  3. Abnormal movements (e.g. mouthing movements, turning the eyes to one side or cycling movements of the legs)
  4. Apnoea alone

It is often very difficult to recognise a convulsion in a newborn infant as infants usually do not have a grand mal fit (generalised extension followed by jerking movements) as seen in older children and adults.

Jitteriness and the movements normal infants make while asleep must not be confused with convulsions. Unlike convulsions, jitteriness can be stimulated by handling the infant. In addition, jitteriness can be stopped by holding that limb.

5-54 What are the important causes of convulsions?

The important causes of convulsions in the newborn infant are:

  1. Fetal hypoxia (hypoxia during labour)
  2. Hypoglycaemia
  3. Meningitis

Convulsions in the first few days of life are usually due to hypoxia during labour.

5-55 How do you treat a convulsion?

  1. Clear the mouth and throat by suction and remove any vomited milk. Then give oxygen by face mask. Mask-and-bag ventilation will be needed if the infant is not breathing or has central cyanosis.
  2. Empty the stomach by a nasogastric tube to prevent vomiting.
  3. Stop the convulsion with phenobarbitone 20 mg/kg given intravenously, if possible, or by intramuscular injection. If the fit does not stop in 15 minutes, diazepam (Valium) 0.5 mg/kg can be given rectally with a syringe and nasogastric tube.
  4. Measure the blood glucose concentration and treat hypoglycaemia, if present, before transferring the infant.
  5. All infants that have had a fit must urgently be transferred to a level 2 or 3 hospital for investigation and treatment.

Congenital abnormalities

5-56 What are the common congenital abnormalities?

  1. Extra fingers: These are usually attached by a thin thread and can be tied off with suture material. One of the parents often has also had extra fingers at birth.
  2. Hypospadias in boys: The underside of the foreskin is missing, the penis is bent down and the opening of the urethra is not at the end of the penis. These infants should be referred, as should infants with undescended testes at term. Infants with abnormal genitalia and uncertain gender must be referred urgently.
  3. Birth marks: Blue marks over the lower back (Mongolian spots) are common and disappear in a few years. Bright red raised ‘strawberry spots’ appear in the first few weeks. They enlarge for a few months and then disappear by 5 years.
  4. Clubbed feet: They cannot be twisted back into a normal position unlike feet that are simple squashed by too little amniotic fluid. The infant must be referred for treatment.
  5. Cleft lip or palate: These infants may need to be fed by tube or cup for the first few days. They must be referred for treatment.
  6. Bowel abnormalities: Infants who dribble or choke because they cannot swallow must be transferred urgently as must infants who vomit bile, develop a distended abdomen or have no anus.
  7. Infants with an abnormal face: Infants with Down syndrome and fetal alcohol syndrome can be recognised at birth by experienced staff. They have an abnormal appearance to their face and may have other abnormalities. They must be referred for a specialist opinion.

Case study 1

A well, breastfed term infant develops jaundice on day 3. The TSB (total serum bilirubin) is 120 µmol/l, which falls into the normal range for day 3. Both the mother and infant are blood group O positive.

1. What is the probable cause of this infant’s jaundice?

This infant probably has physiological jaundice caused by slow bilirubin conjugation by the liver and increased bilirubin reabsorption by the intestines.

2. Why does the infant not have jaundice caused by ABO or Rhesus haemolytic disease?

Because both the mother and infant have the same ABO and Rhesus blood groups.

3. Does this infant have hyper­bilirubinaemia? Give reasons for your answer.

No, this infant does not have hyperbilirubinaemia because the TSB falls within the normal range for day 3.

4. What is the correct management of this infant?

The infant should be managed as for a healthy, normal infant except that the TSB should be repeated daily until it starts to fall.

5. Should this infant receive phototherapy?

No. There is no reason for phototherapy.

6. Should the mother stop breastfeeding? Explain your answer.

No, she should continue to breastfeed. Although breastfeeding may result in a slightly higher TSB, it is not necessary to stop breastfeeding.

Case study 2

The mother delivers a 2000 g infant at home. On day 2 the infant develops bilateral purulent conjunctivitis. When he is brought to the local clinic his eyelids are swollen. Otherwise the infant is well with no other abnormal signs. However, it is noticed that the mother was VDRL positive during her pregnancy and was not treated.

1. What is the probable cause of the conjunctivitis?

Gonococcus. This is the commonest cause of severe conjunctivitis. The infant was probably infected during delivery.

2. How could the conjunctivitis have been prevented?

By placing chloromycetin ointment into the infant’s eyes after delivery.

3. Why should you call this severe conjunctivitis?

Because the eyelids are swollen and the eyes are filled with pus.

4. What is the danger of severe conjunctivitis?

The cornea may become soft and perforate, causing blindness.

5. What is the correct treatment of severe conjunctivitis?

The eyes must be washed out with saline or water. They should then be washed out or irrigated repeatedly until the pus stops forming. In addition, procaine penicillin 100 000 units must be given by intramuscular injection daily for 3 days. Only when the eyes are clean and the first dose of penicillin has been given should the infant be referred to hospital for further treatment.

6. Why is it important to know that the mother had a positive VDRL test during pregnancy?

Because it indicates that she probably has syphilis. If the mother has not been fully treated, the infant must be treated as he may have asymptomatic syphilis infection.

7. What is the treatment if the infant appears well but the mother has untreated syphilis?

If the infant has no clinical signs of syphilis the treatment is a single intramuscular dose of 50 000 units/kg benzathine penicillin. If the infant had clinical signs of syphilis the treatment would be procaine penicillin 50 000 units/kg IM daily for 10 days.

Case study 3

An infant weighing 5000 g is born in a level 2 hospital. The shoulders are delivered with great difficulty. After birth it is noticed that the infant does not move her right arm much and has an asymmetrical Moro reflex.

1. What do you think is wrong with her arm?

She probably has a brachial plexus injury (Erb’s palsy) caused by excessive downward traction (pulling) on the neck during the difficult delivery of the shoulders.

2. How would you confirm this diagnosis?

The infant will have weakness of the shoulder and elbow and will be unable to lift her arm off the bed or flex the elbow against gravity. Movement and power in the hand will be normal. Unless there is a fracture, there should be no tenderness.

3. Will the weakness recover?

Usually the weakness is much improved by a week.

4. What is the correct treatment?

If the weakness is not much better after a week, the infant must be referred to a level 2 or 3 hospital for further management.

Case study 4

A preterm infant weighing 1500 g is born at home. The infant is transferred to hospital but the staff forget to give Konakion. On day 5 the infant passes a lot of fresh blood in the stool, has a small dark brown vomit and appears pale.

1. Why does this infant have blood in the vomit and stool?

The infant probably has haemorrhagic disease of the newborn.

2. Is this condition preventable?

Yes. Haemorrhagic disease of the newborn should not be seen if Konakion is given routinely to all infants.

3. What is Konakion?

Vitamin K1. This must be given to all infants at birth by intramuscular injection into the thigh.

4. What is the correct management of this infant?

Give 1 mg Konakion immediately. Start an intravenous infusion if the infant appears pale and shocked. Discuss the infant with the staff at the referral hospital and transfer the infant as soon as possible.